Freevent XtraCare Mini

Freevent XtraCare Mini HMEF combines an HME with a highly effective electrostatic filter that reduces the inhalation of airborne particles containing viruses and bacteria. It is for daily use up to 24 hours* and provides protection with a filtration efficiency of more than 98%.29,30**

Image

    The patient’s inspired air is both humidified and filtered while expired air is filtered, protecting those in their direct surroundings such as healthcare professional and family. XtraCare Mini is intended for pediatric patients spontaneously breathing through a tracheostoma.

    The compact design is tailored for pediatric patients and fitted with a transparent connector to facilitate monitoring of secretions. It is compatible with 15 mm connectors and can be combined with Freevent O2 Adaptor Mini to administer supplemental oxygen. XtraCare Mini is recommended for children with a tidal volume between 30-250 ml, approx. 7-30 kg.

        Freevent XtraCare Mini provides:

        • Good humidification
        • Effective filtration of bacteria >99%29**
        • Effective filtration of viruses >98%30**

        * All HMEs should be regularly monitored / changed if they become soiled, dropped or clogged.

        ** Please note: Since pathogens can enter and leave the human body in other ways (such as the mouth, nose, and eyes), Freevent XtraCare Mini can never guarantee complete protection. Please read the instructions for use for guidance.

        References

        1 Edwards L, McRae J. Transitions in tracheostomy care: from childhood to adulthood. Current Opinion in Otolaryngology & Head and Neck Surgery. 2023; 10-1097.
        2 Nakarada-Kordic I, Patterson N, Wrapson J, Reay SD. A systematic review of patient and caregiver experiences with a tracheostomy. Patient. 2018 Apr;11(2):175-191.
        3 Watters K. Tracheostomy in infants and children. Pediatric tracheostomy. Respiratory Care. 2017; Vol. 62(6):803.
        4 Fuller C, Wineland AM, Richter GT. Update on pediatric tracheostomy: indications, technique, education, and decannulation. Current Otorhinolaryngology Reports. 2021; 9:188-199.
        5 Okonkwo I, Cochrane L, Fernandez E. Perioperative management of a child with a tracheostomy. BJA education. 2020; 20(1):18.
        6 Tweedie DJ, Cooke J, Stephenson KA, Gupta SL, Pepper CM, Elloy MD, et al. Paediatric tracheostomy tubes: recent developments and our current practice. The Journal of Laryngology & Otology. 2018; 132(11):961-968.
        7 Muller RG, Mamidala MP, Smith SH, Smith A, Sheyn A. Incidence, Epidemiology, and Outcomes of Pediatric Tracheostomy in the United States from 2000 to 2012. Otolaryngology–Head and Neck Surgery. 2019; 160(2):332-338.
        8 Canning J, Mills N, Mahadevan M. Pediatric tracheostomy decannulation: When can decannulation be performed safely outside of the intensive care setting? A 10 year review from a single tertiary otolaryngology service. Int J Pediatr Otorhinolaryngol. 2020 Jun;133:109986.
        9 Flanagan F, Healy F. Tracheostomy decision making: From placement to decannulation. Semin Fetal Neonatal Med. 2019 Oct;24(5):101037.
        10 Gursoy TR, Eyuboglu TS, Aslan AT, Pekcan S, Buyukkaya EZ, Hangul M, et al. The associations between the clinical course of children with tracheostomy and their mothers’ depression, burnout, burden, and self-esteem. Journal of Clinical Nursing. 2023; 32(13-14):3412-3420.
        11 Hall N, Rousseau N, Hamilton DW, Simpson AJ, Powell S, Brodlie M, et al. Providing care for children with tracheostomies: a qualitative interview study with parents and health professionals. BMJ open. 2023; 13(1):e065698.
        12 Flynn A, Whittaker K, Donne AJ, Bray L, Carter B. Feeling stretched: parents’ narratives about challenges to resilience when their child has a tracheostomy. Journal of Child Health Care. 2023; 13674935231169409.
        13 Pullens B, Streppel M. Swallowing problems in children with a tracheostomy. In Seminars in Pediatric Surgery. WB Saunders. 2021 June; 30(3):151053.
        14 DeMauro SB, D’Agostino JA, Bann C, Bernbaum J, Gerdes M, Bell EF, et al. & Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Developmental outcomes of very preterm infants with tracheostomies. The Journal of pediatrics. 2014; 164(6):1303-1310.
        15 Hess DR. Facilitating speech in the patient with a tracheostomy. Respiratory Care. 2005; 50(4):519–525.
        16 Kraemer R, Plante E, Green GE. Changes in speech and language development of a young child after decannulation. Journal of communication disorders. 2005; 38(5):349-358.
        17 Jiang D, Morrison GAJ. The influence of long-term tracheostomy on speech and language development in children. International journal of pediatric otorhinolaryngology. 2003; 67:S217-S220.
        18 Sinha SK. The Respiratory System: Development and Physiology in the Neonate. In Clinical Anesthesia for the Newborn and the Neonate. Singapore: Springer Nature Singapore. 2023; 205-224.
        19 Torres A, Cilloniz C, Niederman MS, et al. Pneumonia. Nat Rev Dis Primers. 2021; 7(25).
        20 Powell J, Powell S, Mather MW, et al. Tracheostomy in children is associated with neutrophilic airway inflammation. Thorax. 2023; 78:1019-1027.
        21 Morrison JM, Hassan A, Kysh L, Dudas RA, Russell CJ. Diagnosis, management, and outcomes of pediatric tracheostomy-associated infections: A scoping review. Pediatric pulmonology. 2022; 57(5):1145-1156.
        22 Gipsman A, Prero M, Toltzis P, Craven D. Tracheobronchitis in children with tracheostomy tubes: Overview of a challenging problem. Pediatric Pulmonology. 2022; 57(4):814-821.
        23 Zhu H, Das P, Roberson DW, Jang J, Skinner ML, Paine M, et al. Hospitalizations in Children with Preexisting Tracheostomy: A National Perspective. The Laryngoscope. 2014
        24 Tan CY, Chiu NC, Lee KS, Chi H, Huang FY, Huang DTN, et al. Respiratory tract infections in children with tracheostomy. Journal of Microbiology, Immunology and Infection. 2020; 53(2):315-320.
        25 Volsko TA, Parker SW, Deakins K, Walsh BK, Fedor KL, Valika T, et al. AARC Clinical Practice Guideline: management of pediatric patients with tracheostomy in the acute care setting. Respiratory care. 2021; 66(1):144-155.
        26 Cline JM, Woods CR, Ervin SE, Rubin BK, Kirse DJ. Surveillance tracheal aspirate cultures do not reliably predict bacteria cultured at the time of an acute respiratory infection in children with tracheostomy tubes. Chest. 2012; 141(3):625-631.
        27 de Kleijn BJ, van As-Brooks CJ, Wedman J, van der Laan BFAM. Clinical feasibility study of protrach dualcare a new speaking valve with heat and moisture exchanger for tracheotomized patients. Laryngoscope Investig Otolaryngol. 2017 Nov 27;2(6):453-458.
        28 Vitacca M, Clini E, Foglio K, Scalvini S, Marangoni S, Quadri A, Ambrosino N. Hygroscopic condenser humidifiers in chronically tracheostomized patients who breathe spontaneously. Eur Respir J. 1994 Nov;7(11):2026-32.
        29 Nelson Laboratories. Bacterial Filtration Efficiency (BFE) GLP Report. Salt Lake City, USA. Available on request from Atos Medical.
        30 Nelson Laboratories. Viral Filtration Efficiency (VFE) GLP Report. Salt Lake City, USA. Available on request from Atos Medical.
        31 Hess DR, Altobelli NP. Tracheostomy TubesDiscussion. Respiratory Care. 2014; 59(6):956- 973.
        32 RP1, Myers C, Rutter MJ, et al. Prevention of tracheostomy-related pressure ulcers in children. Pediatrics. 2012; 129(3):e792-7.

        MC3230-TcEN 202403

        Share

        Save to my content